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ABSTRACT 1 FRAME OF REFERENCE
In this paper, wecompareand contrast the use of Current engineering analyses rely heavily on running
second-order response surface models and kriging modedgpensiveand complex computecodes. Despite the
for approximating non-random, deterministomputer  steadyandcontinuing growth of computingower and
analyses. After reviewingthe responssurface method speed,the complexity of theseodesmaintains pace
for constructing polynomial approximations, kriging is with computing advances. Statistical techniques are

presented as an alternative approximation method for theidely used

designand analysis of computer experimentsBoth
methodsare applied tothe multidisciplinarydesign of
an aerospike nozzle whidonsists of a computational
fluid dynamics model and a finite-element mod@&rror
analysis of the responserfaceand kriging models is
performedalong with agraphical comparison of the
approximations,and four optimization problems are

formulated and solved using both sets of approximation

models. Thesecond-orderesponsesurfacemodels and
kriging models—using a constantinderlying global
model and a Gaussian correlation function—yield
comparable results.

NOMENCLATURE
B - constant underlying global portion of kriging model
Bi, Bj» Bii» - linear, interaction, anduadraticcoefficients
of polynomial equation in response surface
DOE - design of experiments
GLOW - gross lift off weight
MSE - mean square error
N, - number of sample points
R - correlation matrix in kriging model
R(x',x)) - correlation function between pointsandx!
RS - response surface
62 - variance estimate
8, - correlation parameters in kriging model
y - predicted response value at untmed

Undergraduate Researcher and student member AIAA.
Senior Research Engineer and senior member AIAA.
Professorand senior membeAIAA. Corresponding
author. Email: farrokh.mistree@me.gatech.edu.

Copyright © 1998 by Timothy W. Simpson. 1
Published by the Institute of Aeronautics
and Astronautics, Inc. with permission.

in engineering design to construct

approximations of these analysis codes; these

approximationsare then used in place ofthe actual

analysis codes, offering the following benefits:

* They vyield insight into the relationshigetween
output responsey, and input design variables,

» They provide fast analysi®ols for optimization and

design spacexploration since theexpensive-to-run

approximationsare used idieu of the expensive-to-

run computer analyses.

» They facilitate the integration of disciplirdependent
analysis codes.

A common method for building approximations of
computer analyses is to appliesign of experiments
(DOE), responseurface(RS) models,and regression
analysis to build polynomial approximations of the
computationally expensive analyses. For example, the
Robust Concept ExplorationMethod has been
developed tofacilitate quick evaluation of different
design alternatives, identifymportant design drivers,
and generate robust top-level design specificatimiisg
DOE, RS models,and the compromise Decision
Support Problem; it habeen successfully applied to
the multiobjective design of a high speed civil
transpor a family of General Aviation aircraft? a
turbine lift engine’, and a flywheet. In other work, the
Variable Complexity ResponseSurface Modeling
(VCRSM) methofl uses analyses of varying fidelity to
reducethe design space tthe region of interest and
build responsesurfacemodels of increasingccuracy.

. NSF Graduate Research Fellow and student member AIAAThe VCRSM methodemploys DOEand RSmodeling

techniguesand has been successfullgpplied to the
multidisciplinary wing design of ahigh speed civil
transport, to the analysisand design of composite
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curved channel framésnd to reduce numerical noise in model!” Meanwhile, Sacks, et #.andWelch, et af®

structural analyse®® A recent review of several
applications of responsgurfacemodels in engineering
design is given in Ref. 11; for applications of
approximations in structural design, see Ref.

Since computer experiments typically lagkdom

both state that statistical testingimappropriatewhen

it comes to deterministic computer experimentsch
lack random error; therefore, cross-validation and
integratedmeansquare erro(MSE) are often employed

to assess the accuracy of a kriging model.

error, a more appropriate and perhaps more “statistically Kriging and DACE models have found limited

sound” method for approximating deterministic

application in engineering design perhaps because of the

computer experiments is through the use of krigindack of readily available software fit kriging models,

which is alsoreferred to ashe Designand Analysis of
Computer Experiments (DACE)nodelst***  The
validity of the kriging model is not dependent on the
existence of random errandmay be better suited for
applications involving computer experimefscause it
can either “honorthe data,” providing an exact
interpolation, or “smooth the dat&”

Bookef® contrasts traditional DOEand RS
modeling with DACE models. In thielassical” design
andanalysis of physical experimentsndom variation
is accountedor by spreadinghe sample points out in
the design spacand by taking multiple data points
(replicates), see Figure 1Sacks, et al? state that the
“classical” notions of blocking, replication, and
randomization are irrelevant when it comes to
deterministic computer experimentghus, sample
points should be chosen to fill the design space.

DOE/RS Modeling
for Physical
Experiments

DACE/Kriging
for Computer
Experiments

Account for Variability Space Filling
Experimental ) - -

Design
Input settings| | -
at which to .
obtain output

Least Squares Fit Maximum Likelihood

Models [ Estimate
Estimate A : R
output at s
untried input L Ly Lo g
Validation t-tests, F-statistics Cross-validation
Determine fit| R? R, Residual plots Integrated MSE
accuracy (see, e.g., Ref. 17) (see, e.g., Ref. 14)
Figure 1. Comparison of DOE/RS Modeling

and DACE/Kriging *®

As noted inFigure 1, responssurface modeling
typically employs leastsquaresregression tofit a
polynomial model to the sampleddata while kriging
modelsare chosen to interpolate thdata and are fit
using maximum likelihood estimatidi. Validation of

the addedcomplexity of fitting a kriging model, or the
additional effortrequired touse a kriging model. To
clarify this last point,predictionwith a kriging model
requiresthe inversion and multiplication of several
matrices,and the kriging model does not exist as a
“closed-form” polynomial equation; this is further
clarified in Section 2.2. Meanwhile, RS model
prediction requires computation ofsample polynomial
equation once the model has bdién The goal inthis
paper is to examinéhe addedcomputationalexpense
required toperformkriging and comparethe predictive
capability of kriging and RS models.

In Section 2 anoverview of the statistical and
mathematical foundations of RS modeliagd kriging
is given. In Section 3 the multidisciplinagerospike
nozzle design example istroduced; itserves as #est
problem to compare RSand kriging models for
approximation. In Section 4 the R&nd kriging
models are constructed and validated. Section 5four
optimization problemsre formulatedand solvedusing
the RSandkriging models,and Section 6 contains a
discussion of ongoing work.

2 STATISTICAL APPROXIMATIONS FOR
COMPUTER EXPERIMENTS
Building approximations of computer analyses typically
involves: (a) choosing an experimental design to sample
the computer analysisode, (b) choosing amodel to
representthe data, and (c) fitting the model to the
observed data. There are a variety of optiongémh of
these choices,and several of the advantages and
disadvantages okach—with emphasis orresponse
surface methodology, neural networks,nductive
learning and kriging—are discussed in Ref.

In this work, weare primarily concernedwith the
model choiceand model fitting portion of building
approximations. In particular, we focus @asponse
surface models (Section 2.1) and kriging (Section 2.2).

RS models is based on: (a) testing statistical hypothesis

(t-testsand F-statistics)derivedfrom error estimates of
the variability in the data, (b) plottingnd checking the
residuals, and (ajomputing R, the ratio of themodel
sum ofsquares tche total sum ofsquaresand R,

which is R adjusted for the number of parameters in th

€

2.1 Overview of Response Surface Modeling

2.1.1 Mathematicsof ResponseSurfaceModeling
Responsesurfacemodeling techniquesvere originally
developed to analyze the results of physical experiments

and createempirically-based models ofhe observed
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response values. Resporsegfacemodeling postulates Factogivlgg:sponses
a model of the form:

y(x) = f(x) +¢ (1)

. . . Run Sc
where yK) is the unknown function of interestxf(is a Erx]per;riir:]rlg |
known polynomial function ok, ande is randomerror L | Screening
which is assumed to be normalijstributedwith mean
. 2 . - Run N[odehng - Reduce#
zeroandvariances®. Theindividual errorsg;, at each Experiment(s) | <] Factors ||
observationare also assumed to be independent and | Y _ — — -
identically distri_buted. Thgolyno_mial function, ), odel | B“h'}l%g’g?‘g;;“ge |
used toapproximate yX) is typically a low order Building l
polynomial which isassumed to be eithénear, Eqgn. | -
(2), or quadratic, Eqn (3) | Noise YES; Build Robustness |
. Factors? Model (i, ,&\ )
J=Bo+ Y B &) L L ]
1=1
. k k ) [ Seart Desgn
Yy =B+ Z Bix; + Z Bix~ + z z By % X ©) Exhél&?glng | Space
i=1 =1 ] — —y —
X Solutions
The parametersf,, B;, B;, and B;, of the (improved or robust)

polynomials in Egns. (2) and (3) adeterminedhrough Figure 2. General RS Modeling Approach!
least squares regression which minimizes the sum of the
squares of the deviations of predicted valye&), from 2.2  Overview of Kriging

the actual values, ¥j. The coefficients of Eqns. (2) . - -
) . 2. ging
and (3) used tofit the model can be foundsing least 2 2_1 Mathemat|cs3f Kriging ~ Kriging postulates
a combination of a global model plus departures:

squares regression given by Eqgn. (4):
B=[X'X]X’y @) y(x) = f(x) + Z(x) ®)
where yK) is the unknown function of interestxJ(is a
known (usually polynomial) function of, and ZK) is
the realization of a stochastic procegth meanzero,
varianceo?, andnon-zero covarianceThe f(x) term in
Egn. (5) is similar to the polynomiamodel in a
responsesurfaceandprovides a “global’ model of the
2.1.2 GeneraRS ModelingApproach The general  design space. In many caseq fic simply taken to be
approach for building polynomial responsesurface a constant terr (see, e.g., Refs. 13, 14, 18); we use a
models is shown in Figure 2. #reestep process constant ternfior f(x) in the example in Section 4.
involving screening, model building, and model While f(x) “globally” approximates thedesign
exercising is typically employed. space, ZX) creates “localizeddeviations so that the
As shown in Figure 2, the first step involves kriging model interpolateshe n sampleddata points.
screening whichmay beemployed if thereare a large The covariance matrix of X is given by Eqn. (6).
number of factors toreducethe design space to an i N o Do
appropriate region ohterest. In thesecondstep, the Cov[2(x),20)] = 0" R(R(Xx)] ©)
approximation models are built from samplatawhich  In Egn. (6),R is the correlatiomatrix, and R&',x)) is
is obtainedfrom an appropriately chosesxperimental the correlation functiorbetweenany two of the pn
design; if thereare noise factors in the design, sampleddata points x' andx!. R is a (n x n)
robustness models of the meand variance ofeach  symmetric matrix with ones along the diagonal. The
response wouldalso becreated. Ifthe models are correlation function R(',x)) is specified bythe user;
sufficiently accuratethe model isexercised inthe last  Sacks, et al? andKoehlerand Owert® discussseveral
stage of the process searchthe design spacand find  correlation functions which may be used. In this work,
improved orrobust solutions; theeader is referred to, we employ a Gaussian correlation function of the form:

e.g., Ref.17 for more information on responserface P ney : 2
modeling. R(x',x)) = exp[=5 1 8, x; = x}|] @)

whereX is the design matrix of samptiatapoints, X’

is its transpose, andis a column vector containing the
values of the response @achsample point. Fomore
details on leassquaresregression orpolynomial RS
modeling see, e.g., Ref7.
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where n, is the number oflesign variables, are the and Amor° use a multistage DACE modelirsirategy
unknown correlatiorparameters used tfit the model, to design arembeddeclectronic packagevhich has 5
andthe %' and x arethe K" components of sample design variables. Finally, some researchers have
points x' and x. In some casesusing a single employed DACE modeling strategies specifically for
correlation parametegives sufficiently good results  numerical optimization (see, e.g., Refs. 23 and 24).
(see, e.g., Refs. 19, 20, and 14).

Predictedestimates,y (x), of the response y| at 3 AEROSPIKE NOZZLE EXAMPLE
untried values ox are given by: The multidisciplinary design of an aerospike nozzle has
.~ - - beenselected aghe test problem for comparing the
§=B+r"(OR™(y - 1) ®) g e

predictivecapability of RSand kriging models. The

wherey is the columnvector of length n which linear aerospike rocket engine is th@pulsion system
contains the sample values of the respoasdf is a  proposed for the VentureStaReusable Launciehicle

columnvector of length n which is filled with ones  (RLV) which is illustrated in Figure 3.
when f() is taken as a constant. In Eqgn. (8)x) is
the correlation vector of length, between an untried
and the sampled data points'{...,x"}:
r’'(x) = [Rx,xY, RX,x?), ..., R&x™)]". 9
In Eqgn. (8),B is estimated using Eqn. (10).
B=(fTR)H Ry (10)

The estimate of ttle/ariance, 62, between the
underlying global mode andy, is estimated as:

_fi\TR 1y — fR
52 = —fB) R7(y—1B) (11)
nS
where fk) is assumed to b¢he constantp. The Figure 3. VentureStar RLV with L;near
maximum likelihood estimates (i.e., “bagtiesses”) for Aerospike Propulsion Systerf

the 6, in Eqn. (7)used tofit the model are found by

maximizing Eqn. (12) oved, > O (see, e.g., Ref9). The aerospike rocket engirm®nsists of arocket

thruster, cowl,aerospike nozzleandplug base regions
_[n,In@*) +In|R] (12)  @s shown in Figure 4. Thaerospike nozzle is a
2 truncated spike or plug nozzle that adjusts to the
ambient pressure and integrates well with launch
vehicles?” The flow field structure changes dramatically

for the @, create aninterpolative model, the'best” . ; . )
kriging model is found bysolving the k-dimensional from low altitude tohigh altitude on the spikesurface
and in the base flowregion?®3° Additional flow is

unconstrained non-linear optimization problem given byinjected inthe base region tareate an aerodynamic

Eqn. (12). spike* which gives theaerospike nozzléts name and
2.2.2 EngineeringApplicationsof Kriging DACE  increases the base pressang contribution of thebase

and kriging models have found limited use in region to the aerospike thrust.

engineering desigapplications since itsntroduction o

into the literature by Sacks, et'&l Giunt&* performs a RCW'I/‘/ oLl

Both 62 and R| are functions 08,. While any values

preliminary investigation into the use OoODACE

modeling for the multidisciplinargesignoptimization
of a High Speed Civil Transport aircraft. He explores & rmary fiow
5and a 10 variable desigmoblem, observing that the -
DACE andresponsesurfacemodelingapproaches vyield nozzle contour
similar results due to the quadratic trend of the

responses. Booker, et @l.solve a 3lvariable _ _ _ _ _ _ _ _ _ _ _ _ M\ JZ N,
helicopter rotor structural desigproblem; Booker® _ . Plug base Recireulation region
expands the problem to include 56 variablegtamine Figure 4. Aerosplke Com_po_nelgts and Flow
the aeroelastic and dynamic response ofrtiier. Osio Field Characteristics’

Jet boundary

Recompression
shock
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The analysis of thaerospike nozzlsvolves two
disciplines: aerodynamicsand structures; there is an
interaction betweethe structuraldisplacements of the
nozzle surfacendthe pressuresaused bythe varying
aerodynamiceffects. Thrustand nozzle wall pressure
calculations are made using computational fluid
dynamicsanalysisand arelinked to a structural finite-
element analysisnodel for determining nozzle weight
and structural integrity. Amission average engine
specific impulse and engine thrust/weight ratio are
calculatedand used toestimate vehiclegross-lift-off-
weight (GLOW). The correspondingmultidisciplinary

domain decomposition is illustrated in Figure 5. Korte,

et al?® provide additional details on treerodynamic and
structural analyses for the aerospike nozzle.

GLOW contours

Isp

CFD domain

Trajectory domain

Baseflow
model domain

FEM structures
domain

[
\

Figure 5.

Multidisciplinary Domain
Decompositiorf®

For this study, weconsider three design variables
for the multidisciplinary design of theerospike nozzle:
(starting) thruster angle, (exit) heighand length as
shown in Figure 6.

Module

Spline knot
surface angle

Nozzle
centerline

Nozzle Geometr§®

Figure 6.

The thruster angle is thentranceangle of the gas
from the combustiorthamberonto thenozzle surface;
the heightandlength refer to the solid portion of the
nozzleitself. A quadraticcurve defineshe aerospike

nozzle surfaceprofile based onthe values of thruster
angle, height, and length.

Boundsfor the design variableare set to produce
viable nozzle profiles from the quadratic motlaked on
all combinations of thruster angle, heighnd length
within the design space.Second-orderesponsesurface
models and kriging models are developedfor each
response(thrust, weight, and GLOW) in the next
section; optimization of thaerospike nozzlesing the
RS and kriging models fatifferent objective functions
is performed in Section 5.

4 APPROXIMATIONS FOR THE

AEROSPIKE NOZZLE PROBLEM
The data used tdfit the RS and kriging models is
obtainedfrom a 25 pointrandom orthogonal array®
The use of these orthogoretays is based, ipart, on
the work in Ref19 and the discussion in Ref3. The
sample pointareillustrated in Figure 7and arescaled
to fit the design spacelefined bythe bounds on the
thruster angle (a) , height (h), and length (I).

Fa
Figure 7. Orthogonal Array Sample Points

In Section 4.1 we discuss the RS models which are
fit to the data and inSection 4.2, the krigingnodels.
Error analysis of the RS and kriging models is discussed
in Section 4.3,and a graphical comparison of the
approximations is given in Section 4.4.

4.1 Response Surface Models

Second-order RS models fareight, thrust,and GLOW
are obtained using ordinary least squares regression
techniques? The corresponding RS modekwe given
in the Egns. (13)-(15). Thequations have beestaled
against the baselindesign to protecthe proprietary
nature of some of the data.

Weight = 0.810 - 0.116a + 0.121h (13)
+ 0.152| + 0.065a- 0.025ah + 0.0013h
- 0.0539al - 0.0131hl + 0.031l
Thrust = 0.9968 + 0.00031a + 0.0019h  (14)

+ 0.0060! - 0.0017%a+ 0.00125ah - 0.0011h
+ 0.00125al - 0.00198hl - 0.00165I
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GLOW = 0.9930 - 0.0270a + 0.0065h
- 0.0265! + 0.0307a- 0.0163ah + 0.0108h
- 0.0226al + 0.0151hl + 0.0195I

(15) 4.3 Error Analysis of Response Surface and
Kriging Models

An additional 25 randomly selected validatipoints are
used toverify the accuracy ofthe RS and kriging
models. Error is defined aghe differencebetween the
actual response from the computer analysigl the
predictedvalue from the RS or kriging model. The
maximum absolute error, the average absolute error, and
the root MSE—from Eqn. (18)here n (=25) is the
number of validation points—for the 2%andomly
selected validation points are summarized in Table 4.

The resulting R R?,; androot MSE valuesfor each
RS model are given in Table 2. The root MSE is:

Icn —o)2

root MSE = | 01 =) (16)
\ n

where n is the number of sample pointdsytheactual
value of the response, and is the predicted value. As
evidenced by théigh R and R, valuesandlow root
MSE values, thesecond-order RSmodels appear to
capture a large portion of the observed variance.

Table 4. Error Analysis of Approximations

Second-Order Response Surface Models

Weight

Thrust

GLOW

Table 2. Model Diagnostics of RS Models

Max ABS(error) 19.579 0.0329 3.68%
Response Avg ABS(error) 2.44%  0.0129 0.53%
Measure Weight Thrust GLOW root MSE 4.54% 0.015% 0.90%

R? 0.986 0.99¢ 0.971 Kriging Model /Constant and G ian Cor. F
Rzam 0.977 0.99¢ 0.953 riging Models (w on.s ant and Gaussian Cor. Fcn.)

root MSE 1.12% 0.01% 0.25% Weight | Thrust | GLOW
Max ABS(error) 17.239 0.048% 3.43%
4.2 Kriging Models for the Aerospike Avg ABS(error) 2.51%  0.012% 0.59%
root MSE 4.37% 0.018% 0.89%

Nozzle Problem

Kriging models are built from the same 25%ample
points used to fit the response surface models in SecticmooI
4.1. We chose to model tliatausing a constarterm
for the global model and a Gaussian correlation
function, Eqgn. (7), for the local departures determined b
the correlation matrixR.

For the weightand GLOW responses, the kriging
els have lowemaximum absoluterrorsandlower
root MSEs than the RS modelmwever, theaverage
absolute error islightly larger forthe kriging models.
Ws for thrust, the RS models are slightly better than the
kriging models according to the values in the table; the

Initial mvgshgqtpns revealed that a single 6 maximum absolute error and root MSE are slightly less
parametewas insufficient toaccurately modethe data  \yhile the averageabsoluteerrors areessentially the

QUta_ to scaling of the design variables (a similgr problergame_ It is not surprising that the R&odel predicts
is discussed irRef. 21). Therefore, arexhaustivegrid st better; it has @ery high R value (0.998) and
searchwith arefinable step size wasised to find the |5\ oot MSE (0.01%). It isreassuring tonote
maximum  likelihood gstlma‘t‘esfo,r’ the three 8  poyever, that the kriging modeldespite using a
parametersieeded toobtain the“best” kriging model.  constant termand aGaussian correlatiofunction, is
The resulting maX|mu_m likelihood estimates for théee only slightly lessaccuratethan thecorresponding RS
parameters fothe weight, thrustand GLOW models  model. In summary, it appears that both mogedslict
are summarized |_rT able 3; these valueare for the  \well with the kriging models having slight advantage
scaled sample points. in accuracy because of the lower root MSE values.

Table 3. 6 Parameters for Kriging Models 4.4 Graphical Comparison of RS and
Kriging Models

Response
Weight | Thrust | GLOW In addition to the error analysis of Section 4.3, a
Bangie = 0.548 o.sg 3.362 graphical comparison of the Rahdkriging models is
Bheight = 1.323 0.5 2.437 performed to visualize differences in the two
Blongn = 2.718 0.6 0.537 approximations. In Figures 8-1lhree-dimensional

contour plots of thrust, weightand GLOW as a
function of angle, length, and base height are given. In
function and the 25 sampledata points, the kriging each figure, the same contour levels are used for the RS
modelsare fully specified. A newpoint is predicted andkriging models so that the shapes of the contours
using these values in combination with Eqns. (8)-(10). can be compared directly.

With theseparameters fothe Gaussiamorrelation
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Figure 8. Thrust Approximation Contours Figure 10. GLOW Approximation Contours

In Figure 8, the contours of thrust for the RS and  The general shape ahe GLOW contours is the
kriging modelsarevery similar. As evidenced by the same in Figure 10however, the sizandshape of the
high R* andlow root MSE values, wexpectthe RS different contours, particularly along the length axis, are
models to fit the data quiteell. It is againreassuring quite different. The endview along the length axis in
to note that the kriging models resemble therR&lels  Figure 11 further highlights thdifferencesbetween the
even through the underlyingglobal model for the two models. Notice also in Figure 11 that the kriging
kriging models is just a constant term. model predicts aninimum GLOW locatedwithin the
design space centered arounéight = -0.8, Angle = 0,
along the axisdefined by0.2 < Length < 0.8; this
minimum was verified through additional experiments.

e LAY

Zndd Tirdber
Ha Maded

CEIT]

ang e

H
. ,IJ_ £

Figure 9. Weight Approximation Contours

The contours of the R&nd kriging models in I
Figure 9are also verysimilar, but we begin to see gk
localized perturbations caused by the Gaussian
correlation function in thekriging model for weight.
The error analysis from the previous sectidmdicated
that the krigingmodel for weight is slightly more
accurateghan the RSmodel whichmight be attributed
to these small non-linear localized variations.

Figure 11. GLOW Approximation
Contours—End View

The true test of the accuracy of the B&dkriging

models comes when the approximati@ne used during
optimization. This is performed in the next section.
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5 OPTIMIZATION USING RESPONSE
SURFACE AND KRIGING MODELS
It is paramount that any approximationssed in
optimization arereasonably accuratéest theylead the
optimization algorithm into regions dbad designs.
Trust Regionapproachegsee,e.g., Ref. 35)and the
Model Management framework (seey., Refs. 36 and
37) are being developed toensurethat optimization
algorithms are not led astray by inaccurate Solved using: (a) the R8iodelapproximationsand (b)
approximations. In this work the focus hasen on the kriging model approximations fotthrust, weight,
developingthe approximation models, particularly the addGLOW. The optimization iperformedusing the
kriging models, and not on the optimization itself. Generalized Reduced Gradient (GRG) algorithm in
We formulateandsolve fourdifferentoptimization ~ OptdesX® Three differenstarting pointsare used for

problems to compare the accuracy of the RS and krigingachobjective function (the lowenniddle, and upper
models: (1) maximizehrust, (2) minimize weight, (3) bounds of thedesign variables) to asset® average
minimize GLOW, and (4) maximize thrust/weight ratio. number of analysisand gradient calls to the
The first two objective functionsepresent traditional approximations that is necessary to obtaindpgmum
single objective, single discipline optimization design within the given design space. Theame
problems. The second two objective functionsracee  parameters (i.e., step size, constraint violation, etc.) are
characteristic  of multidisciplinary  optimization; usedwithin the GRG algorithnfor eachoptimization.
minimizing GLOW or maximizing the thrust/weight Design variable and response values have begled as
ratio requires trade-offbetweenthe aerodynamics and @ percentage othe baselinedesign to protect the

constraint limits are placed on the remaining responses;
for instance, constraintare placed ornthe maximum
allowable weight and GLOW and the minimum
allowable thrust/weight ratio when maximizinfrust.
However, none of the constraingse active in any of
the final results. The optimization results are
summarized in Table 5.

As shown in Table 5, each optimization problem is

structures d

isciplines.

Foeach objective function,

proprietary nature of some of the data.

Table 5. Optimization Results using Response Surface and Kriging Models
Avg. # of Avg. # of Verified
Analysis Gradient Optimum Design Predicted Optimum Optimum1 % Error #
Calls Calls
Maximize Thrust
Angle 0.096 Thrust 1.0016 1.0013 0.02%
RS 27 4 Height -0.433 Weight 0.9450 0.9476 -0.27%
Models Length 1.000 Thr/Wt 1.0141 1.0134 0.07%
GLOW 0.9724 0.9759 -0.36%
Angle 0.656 Thrust 1.0016 1.0014 0.02%
Kriging 62 5 Height -0.627 Weight 0.9385 0.9155 2.51%
Models Length 1.000 Thr/Wt 1.0157 1.0210 -0.51%
GLOW 0.9690 0.9683 0.08%
Minimize Weight
Angle 0.800 Thrust 0.9957 0.995) -0.01%
RS 29 3 Height -1.000 Weight 0.7584 0.7496 1.18%
Models Length -1.000 Thr/Wt 1.0533 1.0555 -0.21%
GLOW 0.9936 0.9906 0.30%
Angle 1.000 Thrust 0.996% 0.9956 0.08%
Kriging 43 4.67 Height -0.873 Weight 0.7725 0.7443 3.79%
Models Length -1.000 Thr/Wt 1.0506 1.0568 -0.59%
GLOW 0.9824 0.9914 -0.90%
Minimize GLOW
Angle 0.616 Thrust 1.0013 0.995)7 0.56%
RS 30.67 3.33 Height -1.00( Weight 0.8969 0.8617 4.09%
Models Length 1.000 Thr/Wt 1.0251 1.0286 -0.34%
GLOW 0.9660 1.0146 -4.79%
Angle 0.764 Thrust 1.0009 1.0006 0.04%
Kriging 57.67 6.33 Height -0.833 Weight 0.9060 0.8732 3.75%
Models Length 0.676 Thr/Wt 1.0228 1.0302 -0.72%
GLOW 0.9675 0.9680 -0.05%
Maximize Thrust/Weight Ratio
Angle 0.096 Thrust 1.0016 0.9959 0.57%
RS 27 4 Height -0.433 Weight 0.9450 0.9073 4.16%
Models Length 1.000 Thr/Wt 1.0141 1.0173 -0.31%
GLOW 0.9724 1.0228 -4.93%
Angle 0.656 Thrust 1.0016 1.0004 0.02%
Kriging 62 5 Height -0.627 Weight 0.9385 0.90683 3.56%
Models Length 1.000 Thr/Wt 1.0157 1.0231 -0.73%
GLOW 0.9690 0.9666 0.25%
The predicted optimum value is obtained by using the values of angle, height, and length (from the optimum design) Irattedystsuzode.

#A (+) error term indicates that the model is over-predicting; a (-) indicates under-predicting.
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The following observationare made based on the
data in Table 5.
» Averagenumber of analysisnd gradient calls: In
general, the optimizatiorequires feweranalysis and
gradient calls to the RS models than the kriging

models. This can be attributed to the fact that the RS by optimizing Eqgn. (12) isathertrivial.

modelsare simple second-ordepolynomials whereas
the kriging modelsare more complex, non-linear
functions.

» Convergence ratesAlthough not shown in the table,

optimization using the R$nodels tends t@onverge

more quickly than when using kriging models. This
can beinferred from the number ofgradient calls
which is one to threealls fewer for the RS models
than the kriging models.

e Optimum designs: The optimumdesignsobtained
from the RSand kriging modelsare essentially the
same for each objective function.  Thelargest
discrepancy ighe length wherminimizing GLOW;
RS models predict the optimum GLOW¢curs at the

upper bound on length (+1) while the krigingpdels

yield 0.676. Thiddifference isevident inFigures 10
and 11.

* Predicted optimaand predictionerrors: To check the
accuracy of the predicted optinthe optimumdesign
values for angle, height, and length are usethjasts
into the original analysi€odes andthe percentage
differencebetweenthe actualand predictedralues is
computed. The prediction error is less than 5% for all
casesand is 0.5% or less inthree quarters of the
results.

In summary, the RSand kriging approximations
yield comparableresults with minimal difference in
predictive capability. It is worth noting thtiite kriging
modelsperform aswell as thesecond-order RSnodels
even though the global portion of the kriging model is

only a constant.Ongoing work tofurtherimprove the

accuracy of the kriging models is discussed next.

6 CLOSING REMARKS

This simple, yet realisticengineering example of the
design of an aerospike nozzleas been utilized to
demonstrate the use of kriging models askernative

approximation technique to second-order response
surface models for  multidisciplinary design

optimization. There areseveral researchissues to

addressfor the application of kriging to othefand

larger) engineering design problems.

preliminary investigation of such aapproach; his
resultsindicatethat minimal improvement inmodel
accuracy is obtained.

« Fitting a kriging model: For small problems with

relatively few samplgoints, fitting a krigingmodel
However,
as the size of the problem increases and the number of
sample pointsincreases, theaddedeffort needed to
obtain the “best” kriging model may begin to
outweigh the benefit of building the approximation.
Predictingwith a kriging model: Unlike RS model
prediction, predictionwith a kriging model requires
the inversionand multiplication of several matrices
which grow with the number of samplpoints.
Hence, for largeproblemsprediction with a kriging
model may become computationally expensive as
well. The kriging software weare developingwill
facilitate fitting, building, and validating kriging
models, increasing their attractiveness for engineering
applications.
Validating akriging model: Since kriging models
interpolate thedata, R values and residual plots
cannot beused toassess modehccuracy. Inthis
example we use aadditional 25 random validation
points to check model accuracyhowever, other
approaches exist. Yesilyuand Paterd andOtto, et
al*® have developed a Bayesian-validatesirrogate
approach which systematically usesadditional
validation points to make quantitatiassessments of
the quality of the approximatiomodel and provide
theoretical bounds on the largeiscrepancy between
the model and the actual computer analysis. An
alternative method whickloesnot require additional
points is leave-one-outross validatiort! but it is
uncertain how wellthis measure correlatesvith
model accuracy.
Design of experiments for building krigimgodels:
As discussed in Section 1, “space filling”
experimental designs may be better suited for
computer experiments. In this example, we use
orthogonal arraysbut several other experimental
designsexist. Koehler and Owen?® discuss awide
variety of designs including Latinhypercubes,
minimax/maximin designs and orthogonal arrays.
Future work on theaerospike nozzledesign

problem includes adding more design variables and
responses anahvestigating the impact alecomposing
the problem into its disciplines by buildingeparate

+ Selecting a kriging modelln this example, we use a approximations ofeachdiscipline and examining the

constant for the global portion of the krigimgodel.
However, using a global, low-order polynomial
model for fk) in Eqn. (5) mayfurther improve the
accuracy ofthe kriging model. Giunta performs a

effects of different multidisciplinary design formulations
on the solution.
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